Development and Demonstration of Sustainable Surface Infrastructure for Moon/Mars Missions

62nd International Astronautical Congress 2011 Cape Town, South Africa Oct. 5, 2011

Gerald B. Sanders, NASA/Johnson Space Center William E. Larson, NASA/Kennedy Space Center Martin Picard, Canadian Space Agency

Problems with Technology and System Development for Exploration Architectures

- Architectures tend to focus on minimizing upfront costs and mass with little/no assessment of life cycle costs or long-term sustainment
 - Reusability of transportation elements is not considered;
 - Existing or low risk technologies utilized instead of higher payoff options with higher initial costs
 - Impact: Long-term affordability and sustainability of the program is reduced
- Design & development of subsystems have little/no interaction with other subsystems or with the same subsystem in other Vehicles or Elements
 - Life support, power, thermal control and propulsion all utilize different hardware and fluids
 - Major subsystems are customized for each Element or Vehicle
 - Impacts: No commonality of hardware or integration of fluids and increased costs
- Optimization and selection of technologies is not adequately coordinated at the architecture level
 - Introduction of ISRU changes need/focus of air/water/trash recycling technologies
 - Different approaches and selections of fluids/consumables across subsystems
 - Technologies and hardware developed by International Partners not considered
 - ➤ Impacts: Competing technologies, minimized performance from Vehicle/Element perspective and wasted resources

What is need is a more Integrated, Sustainable, & Evolvable Approach to Exploration

Goal: Use Early, Use Often, Use for Multiple Destinations, Be Evolvable

Modular Systems – Common Technologies

- Lower development costs & logistics
- Redundancy
- Flexibility & evolution/growth

Common Fluids

- Integrate across multiple systems
- Common regeneration and production techniques
- Standards and common interfaces
- Mission flexibility in use & failure recovery
- Water, Oxygen-Hydrogen and/or Oxygen-Methane

Optimize Across Multiple Vehicles and Elements

- Consider design implications/requirements for Moon, Mars, and NEOs
- Standardize fluid quality & pressure for ISRU, power, propulsion, & EVA
- Common hardware and operations

Enhanced Transportation/Mobility

- Reusable and expandable transportation and depot elements
- Extensive surface access

In-Situ Resource Utilization (ISRU) – Changes Paradigm of Exploration

- Make it vs Bring it from Earth
- Identify and use ISRU solve architecture problems: risk, mass, logistics
- Make technology selection and design choices on:
 - Return-on-Investment & Life Cycle Evaluation of all exploration systems
 - Long-term goals vs near-term costs and objectives (ie. "Boots on Moon")

Make It vs Bring It – A New Approach to Exploration

Reduces Risk

- Minimizes/eliminates life support consumable delivery from Earth Eliminates cargo delivery failure issues & functional backup to life support system
- Increases crew radiation protection over Earth delivered options In-situ water and/or regolith
- Can minimize impact of shortfalls in other system performance Launch vehicles, landers, & life support
- Minimizes/eliminates ascent propellant boiloff leakage issues In-situ refueling
- Minimizes/eliminates landing plume debris damage Civil engineering and construction

Increases Performance

- Longer stays, increased EVA, or increased crew over baseline with ISRU consumables
- Increased payload-to-orbit or delta-V for faster rendezvous with fueling of ascent vehicle
- Increased and more efficient surface nighttime and mobile fuel cell power architecture with ISRU
- Decreased logistics and spares brought from Earth

Increases Science

- Greater surface and science sample collection access thru in-situ fueled hoppers
- Greater access to subsurface samples thru ISRU excavation and trenching capabilities
- Increased science payload per mission by eliminating consumable delivery

Increases Sustainability/Decreases Life Cycle Costs

- Potential reuse of landers with in-situ propellants can provide significant cost savings
- Enables in-situ growth capabilities in life support, habitats, powers, etc.
- Enables path for commercial involvement and investment

Supports Multiple Destinations

- Surface soil processing operations associated with ISRU applicable to Moon and Mars
- ISRU subsystems and technologies are applicable to multiple destinations and other applications
- Resource assessment for water/ice and minerals common to Moon, Mars, and NEOs

What is In-Situ Resource Utilization (ISRU)?

ISRU involves any hardware or operation that harnesses and utilizes 'in-situ' resources to create products and services for robotic and human exploration

In-Situ Lunar Resources

- 'Natural' Lunar Resources: atmosphere, regolith, volatiles/water, sunlight, cold traps, vacuum
- Discarded Materials: trash/waste, residual propellants, descent stages, etc.

Five Major Areas of ISRU

Resource Characterization and Mapping Determine physical, mineral/chemical, and volatile/water

- Mission Consumable Production Make propellants, life support gases, fuel cell reactants, etc.
- **Civil Engineering & Surface Construction** Make radiation shields, landing pads, roads, habitats, etc.

- **Energy Generation, Storage & Transfer w/ In-situ Resources** Solar, electrical, thermal, chemical based systems
- Manufacturing & Repair w/ In-situ Resources Make spare parts, wires, trusses, integrated structures, etc.

- > 'ISRU' is a capability involving multiple technical discipline elements (mobility, regolith manipulation, regolith processing, reagent processing, product storage & delivery, power, manufacturing, etc.)
- > 'ISRU' does not exist on its own. By definition it must connect and tie to multiple uses and systems to produce the desired capabilities and products.

Lunar ISRU Mission Capability Concepts

Resource Prospecting – Looking for Polar Ice

Excavation & Regolith Processing for O₂ Production

Landing Pads, Berm, and Road Construction

Thermal Energy Storage Construction

Consumable Depots for Crew & Power

Mars ISRU Mission Capability Concepts

Resource Processing Plants

Collapsible/ Inflatable Cryogenic Tanks

Multi-use
Construction/
Excavator:
resources,
berms, nuclear
power plant
placement, etc.

Reusable lander/ascent vehicle or surface hopper fueled with in-situ propellants

Landing pad & plume exhaust berm

ISRU Development and Testing Focus: Space 'Mining' Cycle

Mining

Product Storage & Utilization

Mobility

Crushing/Sizing/ Beneficiation

Waste

ISRU Connectivity with Other Exploration Elements Strongly Influences Designs and Architecture

G. Sanders/JSC, geraid.b.sanders@nasa.gov

Integrated ISRU – Power – Propulsion – Life Support Cycles

Common technologies and hardware for flexibility and reduced DDT&E

G. Sanders/JSC, gerald.b.sanders@nasa.gov

Development and Integration Strategy

- Need Early, Achievable, & Visible milestones & successes; Utilize Laboratory and Analog Site Demonstrations to:
 - Demonstrate capabilities and operations
 - Demonstrate incremental growth in technologies and systems
 - Engage architect/mission planners and public
- Take evolutionary approach in development; Phases of 1-3 years each
 - Phase I: Demonstrate Feasibility
 - Phase II: Technology and systems evolution optimized vs key performance parameters
 - Phase III: Modify and test for mission environment applicability
 - Phase IV: Reach TRL 6 for insertion into flight missions

Coordinate development across all Surface/Transportation Elements

- Identify common requirements, processes, hardware, and operations
- Coordinate development of hardware to align project schedule
- Demonstrate interfaces and interconnection of hardware and operations

Partner and leverage existing hardware & technology development activities

- Develop partnerships and relationships across NASA and other US government agencies, and with International Partners, Industry, and Academia
- Perform joint hardware and operation tests with other Projects and Elements
- Link multiple technology development activities (AES, OCT, SBIR, CIF/CDDF, IR&D, etc.)

Evolutionary Approach for Technology, Module, & System Development

Technology development philosophy

Build a little, test a lot, modify to improve performance, repeat

Key Performance Parameters (KPPs):

- ➤ System mass per kg oxygen produced
- ➤ System energy per kg oxygen produced
- ➤ Difference between system and architecture

Time

Module development philosophy

- Develop for multiple applications
- Upgrade and incorporate as new modules become available

Pg. 12

Why Perform Analog Field Testing for Science, Exploration & ISRU?

Key Programmatic Analogue Field Test Purpose

- Expand NASA and CSA partnership; Include other International Partners in analogues
- Expand integration of Science & Engineering for exploration, particularly with ISRU
- Link separate technology and system development activities
- Develop and enhance remote operations and mission concepts; introduce new technologies
- Evaluate parallel paths and competing concepts
- Be synergistic with other analogue test activities (past and future)
- Public Outreach, Education, and "Participatory Exploration"

Key <u>Technical</u> Analogue Field Test Purpose

- Stress hardware under realistic environmental and mission operation conditions to improve path to flight
- Improve remote operations & control of hardware for surface exploration and science
- Promote the testing of multiple surface and transportation systems to better understand integration and operation benefits and issues
- Promote use of common software, interfaces, & standards for control and operation (ISECG)
- Focus on interfaces, standards, and requirements (ISECG)
- Focus on modularity and 'plug n play' integration (ISECG)

Intrinsic Benefits of Field/Analog Testing

- Develop Scientists, Engineers, and Project Managers for future flight activities
- Develop International Partnerships
- Develop Teams and Trust Early
- Develop Data Exchange & Interactions with International Partners (ITAR)

ISRU-Surface Operations Analog Test Focus

ISRU Objectives – Space ISRU Mining Cycle

- Demonstrate mobile resource characterization (physical, mineral, and volatile) capabilities for lunar polar missions
- Demonstrate technologies and end-to-end system operations for mission critical consumable production on Moon, Mars, & NEO's (oxygen, water, fuel)
- Demonstrate civil engineering and site preparation capabilities that might be required for future human missions (landing pads, roads, protection, etc.)

Surface Operations and ISRU Interface/Interaction Objectives

- Link science operations and instrumentation with site characterization & resource prospecting/mapping needs
- Link ISRU needs and products with Power, Propulsion, and Life Support consumable needs and waste
- Assess interfaces and common hardware potential with Power, Propulsion, and Life Support system developers
- Coordinate ISRU development and system integration with International Space Agencies in mission critical roles

1st ISRU - Surface Operations Analog Field Test

Field Dates: Oct. 30 to Nov. 15, 2008 Location: Mauna Kea , Hawaii

Field Test Objectives

- 1. Mobile Resource Characterization & Oxygen Demonstration (RESOLVE/Scarab)
 - Demonstrate resource prospecting, site surveying, and oxygen production
 - Demonstrate hardware integration and mobile surface operations
 - Opportunistic Demos: Hand-held Raman spectrometer (CSA); Mossbauer spectrometer (JSC) on Cratos rover; CHEMIN XRD/XRF (ARC/LANL)
- 2. OPTIMA (ISRU End-to End Outpost Scale Oxygen Production & Storage Field Test)
 - Demonstrate excavation and regolith delivery to ISRU plant
 - Demonstrate oxygen extraction from regolith at outpost production rate
 - Demonstrate system integration, modularity of modules for swapping, and surface operations
- 3. Demonstrate partnership with International Space Agencies (CSA and DLR) and State of Hawaii and Pacific International Space Center for Exploration Systems (PISCES)

5 NASA Centers, 2 International Space Agencies, 7 Companies, & 2 Universities

Customers

- CxPO Lunar Surface Systems Office
- SMD, OSEWG, and ESMD Lunar Scientist
- NASA ESMD Advanced Capabilities & Directorate Integration Office
- NASA Office of External Relations

ISRU Hardware Tested at 2008 Analog Site

Lunar Prospecting

- Scarab Rover
- **RESOLVE**
- TriDAR Vision System
- Tweels

Outpost-Scale O₂ from Regolith

- ROxygen H₂ Reduction
- Water Electrolysis
- Cratos Excavator

- PILOT H₂ Reduction
- Water Electrolysis
- **Bucketdrum Excavator**

Process Control & Science

- Moessbauer spectrometer
- Mini Chemin XRD/XRF

Canadian Space Agency

- TriDAR imager, Satellite communications, remote operation of Drill and TriDAR navigation, and on-site personnel and payload mobility
- NORCAT, Xiphos, Argo, Virgin Technologies, EVC, Ontario Drive Gear, **University of Toronto**

- German Space Agency (DLR)
 - Instrumented "Mole" & Sample Capture Mole
 - Moessbauer spectrometer

- Carnegie Mellon University
 - SCARAB Rover

1st Demonstration of Space Mining Cycle

2008 Analog Test Site; Mauna Kea, Hawaii

Analog Site Features

Toilets

Medical Supplies

Accessories

On-site Food & Drink

Wind and Dust

Mist & Light Rain

Magnetic Dust

Major Results From Nov. 2008 ISRU Analog Field Test

- ☑ Demonstrated end-to-end operation of RESOLVE/Scarab; roving over varied terrain, dark navigation, drill site selection; remote operation from CSA
- ☑ Demonstrated end-to-end PILOT & ROxygen operations: regolith delivery, reactor fill/empty, regolith processing, water capture and clean-up, oxygen production
- ☑ RESOLVE: 6 Drilling, 6 Volatile characterization; and 4 Oxygen extraction operations
- ☑ PILOT: 6 complete reactor operations; 1000 ml of water produced from iron-oxide
- ☑ ROxygen: 5 complete reactor operations (2 Argon/3 Hydrogen)
- ☑ Field deployment with International Partners, Canadian Space Agency and German Space Agency

2nd ISRU - Surface Operations Field Test

Field Dates: Jan. 24 - Feb. 14, 2010 Location: Mauna Kea, Hawaii

Field Test Purpose

- ➤ Advance ISRU hardware and system hardware over 1st analog field test; ISRU 'mining' cycle
- > Expand ISRU system/capability integration with other transportation and surface elements
- Increase scope and criticality of international partner involvement in ISRU development

NASA Hardware-Operation Objectives

- 1. O₂ Production from Regolith: Test enhanced Oxygen extraction from regolith system & operations
- 2. ISRU Product Storage & Utilization: Test hardware, operations, and energy systems that promote product usage
- **3. Lunar ISRU, Exploration, & Science Integration**: Integrate lunar exploration, resource & site evaluation, and lunar science objectives, instruments, and operations
- 4. Site Preparation: Test hardware, operations, and surface sintering techniques
- 5. Field Geology Training: Train astronauts, ISRU, and NASA/CSA management on geology

8 System Modules – 7 Instruments 6 NASA Centers, 6 Small Businesses, 5 Universities

(42 people plus visitors)

3 Canadian Government Agencies, 8 Small Businesses, 2 Universities
(46 people plus visitors)

 O_2 (Air)

G. Sanders/JSC, gerald.b.sanders@nasa.gov

Build Confidence: ISRU Analog Field Tests

2nd Test – Jan. 2010

Electrolysis &

GO₂ Storage

Reactor

Transfer

Major Results From 2nd ISRU – Surface Operations Analog Field Test

- > Dust to Thrust Successful: Demonstrate hardware and operations in all steps in ISRU from finding resources to utilizing in power and propulsion applications
- ➤ Integration of Surface/Transportation Elements Successful: Integrate ISRU, Power, Fluid Management, and Propulsion modules to 'Close the Loop' for better understanding of interfaces and design impacts
- ☑ Extracted oxygen from local tephra (28 gms or 9.6% ave. yield) using advanced processing and regolith transfer hardware in end-to-end configuration
- ☑ Electrolyzed water from tephra and fuel cell, transferred oxygen to cryogenic cart for liquefaction, and performed 17 LO₂/CH₄ thruster firings; "Dust to Thrust"
- Sintered two surface pads with two different methods and performed thruster firings with high speed camera to understand plume effects on unmodified and modified surfaces
- ☑ Integrated NASA and CSA/Canadian hardware in multiple critical applications
- ☑ Operated RESOLVE remotely from KSC and Solar Collector, Carbothermal Reactor, and Water Electrolysis systems remotely from JSC
- ☑ Tested SMD FSAT and MMAMA instruments for site/mineral characterization and support oxygen extraction process evaluation
- ☑ Completed field geology training with NASA and CSA managers and a CSA astronaut

3rd ISRU – Surface Operations Field Test

Field Dates: June, 2012 Location: Mauna Kea , Hawaii

Top-Level Field Mission Objectives (Exploration Mission Capabilities):

1. Science/Resource Characterization

- A. Perform robotic lunar polar ice/volatile characterization mission (applicable to Mars and NEOs)
- B. Perform robotic science/resource/site characterization mission with multiple rovers and control centers (*applicable to multiple destinations*)

2. Technology Demonstrations (NASA Involvement Limited Pending Funding Decisions)

- A. Mobility and human robotic systems
- B. ISRU (excavation, landing pads, oxygen/fuel production)
- C. Power & Fluid Systems(fuel cells, power management, cryogenic fluid management)

3. Mission Support and Operations

A. Utilize mission representative communications infrastructure and remote operation centers and procedures

4. Human Medical Tele-Operations

- A. Advanced Astronaut Medical Support Concepts & Technologies (patient simulator, ultrasound ...
- B. Use combination of representative candidates at the field test with remote specialists

5. Human Exploration Field Test Involvement

- A. Human-capable EVA rover mobility testing
- B. Field science prospection missions humans, rovers & technologies

Public Outreach, Education, and "Participatory Exploration" is Critical to All Objectives

Objective 1A: Polar Science – Resource Characterization Mission

Purpose: Demonstrate Integrated Mobility Platform/Science Payload for Polar Ice/Volatile Mission

Perform 1 or more mission scenarios remotely with all hardware/capabilities required

Questions to Be Addressed

- What science & resource characterization instruments should be mounted on a single platform?
- How are operations and data collection effected by control from multiple control centers?
- How does remote scientist involvement (in the loop?) impact productivity?
- How are operations effected by Remote Operations, Power, and level of Autonomy?
- Are navigation capabilities sufficient to for mission scenarios evaluated?

NASA Rover Mounted

CSA Rover Mounted

Objective 1B: Perform Robotic Resource and Terrain Site Characterization

Purpose: Demonstrate instruments and operations associated with performing terrain and resource site characterization before crew arrive

- To evaluate operation concepts and instrument effectiveness with characterizing physical/mineral resources and site terrain; Single vs Multiple Rovers (International)
- Extend Science/Site Characterization operations and instruments from Objective 1A

Questions to Be Addressed

- How do science and resource prospecting site characterization differ? Instruments & Ops
- Can multiple rover/instrument operations be coordinated remotely? By Multiple Ops centers in different time zones
- How does rover size (micros) or number of instruments on each rover impact science performed over specified time?
- How does remote scientist involvement (in the loop?) impact productivity? Multiple Ops centers
- How are operations effected by Communications (time delays) and Level of Autonomy

Objective 2: Technology Demonstrations (NASA Involvement Limited Pending Funding Decisions)

Demonstrate all aspects associated with Mars soil and atmospheric processing at relevant scale for demonstration mission

- Build off of and demonstrate commonalities with Lunar ISRU
- Tele-operated/autonomous excavation, regolith delivery/removal, and landing pad construction
- Mars water extraction with reactor, water electrolysis, & regolith transfer
- Mars atmosphere processing with Sabatier for methane (CH₄) production
- Liquid O₂ and Gaseous H₂ storage and regeneration; examine standardized interfaces
- Zero loss O₂ (and CH₄) cryogenic fluid transfer in dusty environment
- Integrate Fuel Cell for nighttime power

Questions to Be Addressed

- Can all hardware be mounted and deployed from a lander mockup at relevant mission scales?
- Can end-to-end operations be performed tele-operated from remote sites and what is the impact of time delays? What operations be performed autonomously?
- Can the products generated be utilized to support further analog site test objectives?
- Can fuel cell system provide adequate nighttime power (with variable demand) with minimum/no oversight?

Clear Landing Pad

Lunar/Mars Propellant Production

Potential CSA Supplied Hardware

Artemis Jr Rover(<190 kg)

MRPTA Micro-Rover (30 Kg)

Kapvik Micro-Rover (30 kg)

Juno Rover(s) with related ISRU

payloads

Three-D Exploration Multispectral Microscope Imager (TEMMI)

Small Manipulator Mini Corer Arm (1 m, 6 DoF)

RESOLVE 1 m Core Drill & Sample Transfer

Tele-medicine patient simulator

Generic Payload Interface

Potential NASA Supplied Hardware

Centaur 2 Rover

K-10 Rover?

LaRC Rover?

In-situ Power and Communications Infrastructure

Neutron Spectrometer

Near Infra-Red Spectrometer

Moon-Mars Analog Mission Activity (MMAMA) Instruments

3rd Analog Field Test Status

- Top-level field test purpose, goals, and objectives approved by NASA and CSA (Dec. 2010)
- A trip to Apollo Valley on Mauna Kea was performed to understand communication impacts and limitations for performing analogue testing for the polar ice/volatile mission scenario near the VLBI antenna. (Mar. 2011)
- NASA and CSA have initiated discussions on communication architecture and roles/responsibilities (Apr. 2011)
- Agreement reached with NASA Science Mission Directorate (SMD) to provide addendum to Moon Mars Analog Mission Activity (MMAMA) ROSES solicitation (May, 2011)
- Grant with University of Hawaii Hilo awarded to support field test (May, 2011)
- A NASA proposal covering the joint NASA-CSA field test in June 2012, was selected but asked to merge into all NASA analog planning with direction focus on performing a lunar polar ice/volatile characterization and site/resource prospecting mission scenarios with CSA (May, 2011)
- CSA Science provided initial inputs for science objectives and activities to occur at the field test (May, 2011)
- Tentative sites selected for field test activities: Trip for final review planned for Nov. 2011
- NASA Moon Mars Analog Mission Activity (MMAMA) solicitation for science instrument involvement closed (Aug. 26, 2011). Selections this fall.